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Axially symmetric cosmological models for the perfect fluid 
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Department of Theoretical Physics, P Lumumba Peoples’ Friendship University, Moscow 
I17 302, USSR 

Received 17 May 1983, in final form 13 February 1984 

Abstract. Families of metrics are found in synchronous coordinates generalising Tolman’s 
spherically symmetric solutions, both f o r  non-coherent dust and for special cases of perfect 
fluid with non-zero pressure. New metrics depend on an additional arbitrary function of 
R, 8, and they lead specifically to solutions of the Schwarzschild and Friedmann types (but 
differing from them in general, especially in their Petrov types and isometries). 

1. Introduction 

In relativistic cosmology, a number of isotropic and homogeneous models of the 
universe are studied, which often admit representation in some generalisations of 
spherical coordinates, These models, along with the other spherically symmetric 
solutions of the Einstein equations, form the simplest descriptions of observed material 
systems and the space-times thereof. However, observational cosmology tells us that 
even in the large scale picture of the universe, spherical symmetry may be merely an 
approximation. There are hints on the existence of some preferred polarisation of the 
angular momenta of galaxies, and even of linear structures of extremely large scale in 
the universe. Though the real structure of our world cannot be characterised exactly 
by some strict symmetry, it appears to be adequate to study more closely also axially 
symmetric cases which are richer in physical content, especially since in spherically 
symmetric systems there cannot exist gravitational radiation, dragging phenomena, etc. 
Some progress has already been made, on the one hand, in approximate study of 
systems only slightly declining from spherical symmetry; these were investigated using 
perturbation methods. On the other hand, the exact axial symmetry has been treated 
extensively for some localised sources. We consider here a generalisation of the latter 
case, but treat it from the cosmological point of view which does not exclude localised 
sources. We show here that using synchronous coordinates, as was done by Tolman 
(l934), Dandach and MitskiCvic (1980a, b) and Dandach (1982) for the spherical 
symmetry, one is able to solve Einstein’s equations for axially symmetric cosmological 
models. (Such models as well as other non-stationary but not rotating axisymmetric 
non-vacuum metrics were not discussed by Kramer et a1 (1980), since they escaped 
general attention.) The axial symmetry is described by a space-like Killing vector field 
5 with closed (compact) trajectories; this Killing vector vanishes on the axis of rotation. 
Hence, one may introduce coordinates such that the metric coefficients are independent 
of the coordinate cp ([=a,). However, we shall not use the coordinates of Weyl, 
Levi-Civitii, Papapetrou or others, but the synchronous coordinates that are more 
convenient for the description of cosmological models. The transition to synchronous 
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coordinates in static or stationary metrics results generally in the off -diagonal spatial 
metric (see Gupta and MitskiCvic 1983), so the assumption of the diagonal metric 
(rotation is absent) 

(1) 

that we use below, imposes supplementary limitation. We shall see, however, that this 
fact does not prevent us from getting physically reasonable solutions. Evidently, in 
( l ) ,  as in any synchronous system, time coordinate lines are geodesics. 

ds2=dT2-A2(R,  8, T ) d R 2 - B 2 ( R ,  8, T)d02-D2(R, 8, T)dp2,  

we get all the components of the curvature tensor R(p) (v ) (m) (8 ) ,  the Ricci tensor R(,)(,,) 
and the scalar curvature R. This gives us the left-hand part of the Einstein equations, 

R(,,(U, - f g ( , , ( ” , R  = -xT( , , (u , ;  (4) 

the right-hand part we shall fix from physical considerations. We have then the system 
of equations 

B’ 8 
B D  

B D 1 [ B ~ D ~  ( ’ ) o  ] - x T ( , ) ( , ) = - + - - -  --+ - -BD , 
B D B D A A  

1 B I D ’  
A B  A B D  A A - XT(~,( , ,  = [ (”) ’ + ( f) - AB] + - [ - - + (i) - 891 

D” A B  
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where 

For the energy tensor we choose that of the perfect fluid, 

T(,)(”, = ( P  + P ) ~ ( , P ( u ) - P g ( , X u ) ,  ( 6 )  

with an as yet unspecified equation of state. 
If in the fluid under consideration there exists a pressure which depends on time 

only, then it is always possible to choose the co-moving synchronous system of 
coordinates. In fact, substituting (6)  into the conservation equation 

Trvu = 0, (7) 

p u ’ u ~ u + ( p u u ) ; ” u ”  +p;u(u”uu  - g ” “ )  +p(u”u”) ;u  =o. 

( p  + p ) u ” ; , u U  + p ; u ( u ” u u  -gWU)=0,  

we get 

Because of u,u” = 1 and u,uw;, = 0 we have then 

p , u ( u ” u y  - g ” ” )  being the pressure gradient projected onto the three-space. If the 
pressure does not depend on the spatial coordinates the latter expression vanishes, 
and we get the equation ( p  +p)u”; ,u  = 0 describing the geodesic motion if p + p  # 0. 
Hence, without loss of generality it is possible to choose a frame of reference such 
that the three-velocity of the matter will be zero everywhere (U‘ = 0, i = 1,2,3 and 
uo = 1). The energy-momentum tensor has then a simple form 

T(, , (v ,  = ( P  + P ) U ( , P ( ” ,  -Pg(,Nu) = P q x  +psi’. (8) 

3. A study of the equations 

It follows from (8) that the off-diagonal expressions in the system ( 5 )  ( 5 ( a H 5 c ) )  must 
vanish, the right-hand sides of (5d)-(5f) being equal to ( - x p ) ,  and the right-hand 
side of ( 5 g )  equal to ( - x p ) .  Then for ( 5 a ) ,  we get 

(1 / B)( B’/  A)’ + ( 1 / D)( D’/ A)’ = 0 (5a‘) 
where the functions A, B, D are positive square roots of the moduli of the metric 
tensor components. 

Equation ( s a ’ )  has one evident solution for (B’IA)’ = (D’/A)’, namely, 

B’/A =f,(R, e>, D’/A = f , ( ~ ,  e) .  ( 9 a )  

(B‘/A)’> 0 and (D’/ A)’ < 0,  (9b )  

(B’/A)‘< 0 and (D’/ A)’ > 0 .  (9c)  

Other solutions emerge in two cases: 

One may assume in a special case 

D = E (  R, 8)B32B’ /A  = - ( E ’ /  E)(B/A) + K (  R, e) 
for 

B’/A= U ( R ,  B ) S ( T ) J K  =0+2B’/B= - & ‘ / E .  
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In this paper we consider generally the case (9a) ;  case (96) is studied for the 
homogeneous universe only, where 

Ai A = B/ B = Dl D. 

Then from (5.2) it immediately follows that 

The expression (5c) automatically vanishes as a result of (9a)  and (10); ( 5 g )  we solve 
below separately, that gives the value of mass-energy density p of the system. The 
remaining equations ( 5 d ) - ( 5 f )  are mutually connected in the following way: 

(-XT,,,,,,BD)’ = -xT(,,(,,B’D - XT,,,(,,BD’. 

When ( 5 e ) ,  ( 5 f )  are integrated over R, the solution of (5d) - (5f )  can be found by solving 
two equations: 

2BB + B 2  +xpB’ = f :  +2 fI$’ d R  + zI (  T, O ) ,  

( 1  1) 
I 
I 2 DD + D’ + xpD2 = f :  +2  f 2 &  d R  + z2( T, 0). 

The metric ( 1 )  is axially symmetric, so it admits spherical symmetry as a particular 
case, transition to which consists of dropping the dependence of A, B on the angle 0, 
while D +  B sin 0. Such a transition should be possible at every step of our analysis 
(and it changes both the isometry group and the Petrov type of our metrics). In terms 
of the independent functions obtained earlier ( fl, f 2 ) ,  from which all other functions 
(A ,  B, D, cp, (L) are to be constructed, the transition to the spherically symmetric case 
means that 

(12)  f 2  = f l  sin 0 

where fl depends on R only. It follows from (12)  that 

whence 6 = 0. 
As a result of (12) ,  zI = - 1 ,  z2 = -sin2 0 (in the case of spherical symmetry); indeed, 

substituting 
Ryabushko 

whence 

(12)  into (5c) and taking into account (10) and  (13 ) ,  we should 
1967) 

2 BB + B 2  + xpB2 = f ;  - 1 ,  2DD+D2+xpD2= fi-sin’ 0, 

f : + 2  f l ( L o d R + z l = f ~ - l ,  *” = 0, 

* = o .  

I 
f 2 c p ~ d R + z 2 = f ~ - s i n 2  0, 

get (see 

(14) 

From ( 1 2 )  and (14) it follows that the assumption of the independence of fl and 
fi of T leads to the independence of z1 and z2 of T. This holds for any fl  and  f 2  
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(a , )  P = a / T 2 ,  a = constant > 0; 

x,, = x0l ~ 1 " ~  ~in~ /~ [4 (3xa  - 1)'12 In (+/ T)] ,  

X ,  = Xol T y 3  sinh213[f(l -3xa)'12 In (+/ T)] ,  

 XU - 1 > 0, (26) 

  XU - 1 <O, (27) 

X ,  = xol q 1 1 3  T I ,    XU - 1 =O. (28) 

(a31 P = + 112, a = constant > 0; 

X ,  = X ~ ( T '  + 1y13 sin213[+ +(I  cot-' T I .  (30) 

For case (IIIb) (F,, # 0 and p = p ( T ) )  equations (15) are not integrable in their general 
form when no special dependence of p on T and the special form of F, are fixed. 
From (5g) and (8) we get in the general case an expression for the mass-energy density 

= -3p - (2/x)(A/A + B /  B + D I D ) .  (31) 

If the condition (12) is satisfied, and we pass to the case of spherical symmetry, 
then for dust ( p  = 0) we have the Tolman case, and from (17H19) we obtain the three 
well known Friedmann solutions for the universe with negative, zero and positive 
curvature of the three-space, as well as the Schwarzschild solution in the Lemaitre 
coordinates. The condition (12) with p = p (  T )  leads to the case of spherical symmetry 
with non-zero pressure (Dandach 1982, Ryabushko 1967). Substituting into (3 1) 
equations (16) and (20), we get for the mass-energy density p correspondingly: 

(32) p=O, p = (1/2x)( M I /  BIB2 + M i /  D'D'), 

p = constant, 

BbN, + B o N i N l  DbN2+DoN;+DoN;N2 
xp = NI + N2 

Bh+BoN; DL+DoN; 

where 

N2 = (fxp)"' cot[{(fxp)"'( T + &)I d T, X,, = X o  exp N2. J 
5. Analogues of the Schwarzschild and Friedmann fields 

(33) 

To construct the axially symmetric analogue of the Schwarzschild solution, one has 
to put p = O  for p = O ;  then from (32), M :  = M;=O. Substituting the latter equality 
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In the Friedmann-like case we deal with a homogeneous universe. The observable 
local expansion velocity depends on time only (Peebles 1971), 

where H is the direction-dependent Hubble function. Taking into account (9), we get 
from (36) analogues of all three Friedmann models with zero, negative and positive 
three-curvature: for zero three-curvature 

ds2 = dT2 - U'( T)[( M;"l'Mi2/9fi) dR2 + M?I3 de2 + M:13 dp2] (37) 

with MI and M2 such that (M~'l')'/(M~'l')'= f2/fl and for non-zero three-curvature 

ds2 = d T2 - a '( T )  [ (%) '2i d R + (3) d 8' + (B) d (O '1 (3 8) 
2FI 2 F1 2 F2 

(these solutions are now not conformally flat: they are of the algebraically general 
Petrov type I). From (17) we get the Schwarzschild solution in Lemaitre coordinates 
if 

Mn = 2m, 4 n = R ;  

when c $ ~  = constant, the homogeneous case takes place. Vacuum solutions, relevant 
to (17), correspond to the case when Mk = 0. Then in view of (32), the mass-energy 
density vanishes ( p  = 0). Choosing 

4 n  = REY(R), MI=(2m)'l2C"(8),  M2=(2m)i12LP(e)C"(8), 

we get such an inhomogeneous model, generalising the Schwarzschild case (a 'prolate' 
singularity), that reduces to the Schwarzschild solution, if a = p = y = 0. In this case 

ds2=dT2-A2(R,8,  T)dR2-B2(R, 8, T)dB2-D2(R,8, T ) d p 2  

where 

B = [ t ( 2 m ) 1 / 2 C " ( R E Y ~  T)I2I3, D=[ ; (2m)l12LPC"(REY~ T)I2l3, 

A =  B'/fl. (39) 
The expressions (35) and (39) have to satisfy the conditions (lo), in particular 

D'/B'=f,/f,(R, e), &B = +(R, e). 
The first of these conditions results in C'=O; from the second condition and from 
(39) we get 

*=- 9 2 E ~ + ~ E ~ - - I E ' R  E Y R - T  [ 3 ( 3 O  + 2 4 ] ,  

then f, = K(R)C312", hence A = 0. 
It is easily seen that the corresponding space-time is of Petrov type I, and it 

degenerates to type D only in the case of strict spherical symmetry (12). As to the 
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Killing vectors, their components to and 5' can be non-zero only if d.f,/dR = 0 (in this 
case 4, = 42, 4' = f 1 in (35)), and then to = a = constant, 5' = - a /  4 ' ;  otherwise a = 0, 
and the solutions cannot be static or stationary. On the other hand, 

5 2 =  hC-2"/3 s i n m c p  + Po11 

and 

t3 = K - h h  cos[&cp +cpO)] [ C - 2 a / 3  sin4P/30 de, 

- 
where 6, K ,  h =constant, 1 = sin[Jb(cp +cpO)], and the function C, which comes here 
from (35), has to satisfy the equation 

d2z/dB' -$ cot 0 dz/de  +(2p/3 sin 0 - b sin-4P/3 e)z = 0, (40) 

= c-2*/3. , otherwise h = 0, and we remain with $= 13, ( K  = 1) which exists in the 
general axisymmetric case when no other Killing vector is present. This analysis shows 
that the solutions discussed here are more general than those which can be found in 
Kramer er a1 (1980). If, however, (40) holds, we come to non-trivial extra Killing vectors 
of the form i= ['as + t 3 d p  with two independent choices of the phase cpo leading to 
1 = sin cp and I = cos cp (which usually represent the spherical symmetry). Returning to 
the case df,/dR =O(i.e. a ZO) we can choose a = 1, and since 4 '=  1, we get [ = d T F a R .  
Hence 

- -  
6 '  [ =  g, f g R R  = I -A'S  0. 

In the region where the upper non-equality holds, the solution is static (or stationary 
if the Killing congruence rotates) ; where the lower non-equality holds, a non-stationary 
region is realised, and these two regions are divided one from another by the usual 
horizon (at the hypersurface $. f =  0), but this cannot be the general case for the 
solution (35). 

6. Conclusions 

The analysis presented above has shown that in the axially symmetric case in syn- 
chronous coordinates there exists a situation similar to Tolman's well known spherically 
symmetric case (but to some extent richer than it was). We have found families of 
metrics (see (17)-(19), (2 l)-(23), (25)-(30), (32)-(34)) which generalise spherically 
symmetric ones (both for non-coherent dust and for special cases of perfect fluid with 
non-zero pressure); they depend on one extra (as compared with the spherically 
symmetric fields) arbitrary function of R and 0. Specifically, our metrics lead to 
solutions of the Schwarzschild ( (39,  (39)) and Friedmann ((37), (38)) types but differing 
from them in general. A limiting transition (see (12) and the corresponding discussion) 
is studied which leads from the axially symmetric exact solutions to the spherically 
symmetric ones. 
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